Code Quality

This is a printer-friendly version. It omits exercises, optional topics (i.e., four-star topics), and other extra content such as learning outcomes.

Introduction

Basic

Always code as if the person who ends up maintaining your code will be a violent psychopath who knows where you live. -- Martin Golding

Production code needs to be of high quality . Given how the world is becoming increasingly dependent of software, poor quality code is something we cannot afford to tolerate.

Code being used in an actual product with actual users

Guideline: Maximise Readability

Introduction

Programs should be written and polished until they acquire publication quality. --Niklaus Wirth

Among various dimensions of code quality, such as run-time efficiency, security, and robustness, one of the most important is understandability. This is because in any non-trivial software project, code needs to be read, understood, and modified by other developers later on. Even if we do not intend to pass the code to someone else, code quality is still important because we all become 'strangers' to our own code someday.

The two code samples given below achieve the same functionality, but one is easier to read.

     

Bad

int subsidy() {
    int subsidy;
    if (!age) {
        if (!sub) {
            if (!notFullTime) {
                subsidy = 500;
            } else {
                subsidy = 250;
            }
        } else {
            subsidy = 250;
        }
    } else {
        subsidy = -1;
    }
    return subsidy;
}

  

Good

int calculateSubsidy() {
    int subsidy;
    if (isSenior) {
        subsidy = REJECT_SENIOR;
    } else if (isAlreadySubsidised) {
        subsidy = SUBSIDISED_SUBSIDY;
    } else if (isPartTime) {
        subsidy = FULLTIME_SUBSIDY * RATIO;
    } else {
        subsidy = FULLTIME_SUBSIDY;
    }
    return subsidy;
}

     

Bad

def calculate_subs():
    if not age:
        if not sub:
            if not not_fulltime:
                subsidy = 500
            else:
                subsidy = 250
        else:
            subsidy = 250
    else:
        subsidy = -1
    return subsidy

  

Good

def calculate_subsidy():
    if is_senior:
        return REJECT_SENIOR
    elif is_already_subsidised:
        return SUBSIDISED_SUBSIDY
    elif is_parttime:
        return FULLTIME_SUBSIDY * RATIO
    else:
        return FULLTIME_SUBSIDY

Basic

Avoid Long Methods

Be wary when a method is longer than the computer screen, and take corrective action when it goes beyond 30 LOC (lines of code). The bigger the haystack, the harder it is to find a needle.

Avoid Deep Nesting

If you need more than 3 levels of indentation, you're screwed anyway, and should fix your program. --Linux 1.3.53 CodingStyle

In particular, avoid arrowhead style code.

Example:

Avoid Complicated Expressions

Avoid complicated expressions, especially those having many negations and nested parentheses. If you must evaluate complicated expressions, have it done in steps (i.e. calculate some intermediate values first and use them to calculate the final value).

Example:

Bad

return ((length < MAX_LENGTH) || (previousSize != length)) && (typeCode == URGENT);

Good


boolean isWithinSizeLimit = length < MAX_LENGTH;
boolean isSameSize = previousSize != length;
boolean isValidCode = isWithinSizeLimit || isSameSize;

boolean isUrgent = typeCode == URGENT;

return isValidCode && isUrgent;

Example:

Bad

return ((length < MAX_LENGTH) or (previous_size != length)) and (type_code == URGENT)

Good

is_within_size_limit = length < MAX_LENGTH
is_same_size = previous_size != length
is_valid_code = is_within_size_limit or is_same_size

is_urgent = type_code == URGENT

return is_valid_code and is_urgent

The competent programmer is fully aware of the strictly limited size of his own skull; therefore he approaches the programming task in full humility, and among other things he avoids clever tricks like the plague. -- Edsger Dijkstra

Avoid Magic Numbers

When the code has a number that does not explain the meaning of the number, we call that a magic number (as in “the number appears as if by magic”). Using a named constant makes the code easier to understand because the name tells us more about the meaning of the number.

Example:

     

Bad

return 3.14236;
...
return 9;

  

Good

static final double PI = 3.14236;
static final int MAX_SIZE = 10;
...
return PI;
...
return MAX_SIZE-1;

Note: Python does not have a way to make a variable a constant. However, you can use a normal variable with an ALL_CAPS name to simulate a constant.

     

Bad

return 3.14236
...
return 9

  

Good

PI = 3.14236
MAX_SIZE = 10
...
return PI
...
return MAX_SIZE-1

Similarly, we can have ‘magic’ values of other data types.

Bad

"Error 1432"  // A magic string!

Make the Code Obvious

Make the code as explicit as possible, even if the language syntax allows them to be implicit. Here are some examples:

  • [Java] Use explicit type conversion instead of implicit type conversion.
  • [Java, Python] Use parentheses/braces to show grouping even when they can be skipped.
  • [Java, Python] Use enumerations when a certain variable can take only a small number of finite values. For example, instead of declaring the variable 'state' as an integer and using values 0,1,2 to denote the states 'starting', 'enabled', and 'disabled' respectively, declare 'state' as type SystemState and define an enumeration SystemState that has values 'STARTING', 'ENABLED', and 'DISABLED'.

Intermediate

Structure Code Logically

Lay out the code so that it adheres to the logical structure. The code should read like a story. Just like we use section breaks, chapters and paragraphs to organize a story, use classes, methods, indentation and line spacing in your code to group related segments of the code. For example, you can use blank lines to group related statements together. Sometimes, the correctness of your code does not depend on the order in which you perform certain intermediary steps. Nevertheless, this order may affect the clarity of the story you are trying to tell. Choose the order that makes the story most readable.

Guideline: Follow a Standard

Introduction

One essential way to improve code quality is to follow a consistent style. That is why software engineers follow a strict coding standard (aka style guide).

The aim of a coding standard is to make the entire code base look like it was written by one person. A coding standard is usually specific to a programming language and specifies guidelines such as the location of opening and closing braces, indentation styles and naming styles (e.g. whether to use Hungarian style, Pascal casing, Camel casing, etc.). It is important that the whole team/company use the same coding standard and that standard is not generally inconsistent with typical industry practices. If a company's coding standards is very different from what is used typically in the industry, new recruits will take longer to get used to the company's coding style.

💡 IDEs can help to enforce some parts of a coding standard e.g. indentation rules.

Basic

Learn basic guidelines of the Java coding standard (by OSS-Generic)

Guideline: Name Well

Introduction

Proper naming improves the readability. It also reduces bugs caused by ambiguities regarding the intent of a variable or a method.

There are only two hard things in Computer Science: cache invalidation and naming things. -- Phil Karlton

Basic

Use Nouns for Things and Verbs for Actions

Every system is built from a domain-specific language designed by the programmers to describe that system. Functions are the verbs of that language, and classes are the nouns. ― Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship

Use nouns for classes/variables and verbs for methods/functions.

Examples:

Name for a Bad Good
Class CheckLimit LimitChecker
method result() calculate()

Distinguish clearly between single-valued and multivalued variables.

Examples:

Good

Person student;
ArrayList<Person> students;

Good

student = Person('Jim')
students = [Person('Jim'), Person('Alice')]

Use Standard Words

Use correct spelling in names. Avoid 'texting-style' spelling. Avoid foreign language words, slang, and names that are only meaningful within specific contexts/times e.g. terms from private jokes, a TV show currently popular in your country

Guideline: Comment Minimally, but Sufficiently

Introduction

Good code is its own best documentation. As you’re about to add a comment, ask yourself, ‘How can I improve the code so that this comment isn’t needed?’ Improve the code and then document it to make it even clearer. --Steve McConnell, Author of Clean Code

Some think commenting heavily increases the 'code quality'. This is not so. Avoid writing comments to explain bad code. Improve the code to make it self-explanatory.

Basic

Do Not Repeat the Obvious

If the code is self-explanatory, refrain from repeating the description in a comment just for the sake of 'good documentation'.

Bad

// increment x
x++;

//trim the input
trimInput();

Write to the Reader

Do not write comments as if they are private notes to self. Instead, write them well enough to be understood by another programmer. One type of comments that is almost always useful is the header comment that you write for a class or an operation to explain its purpose.

Examples:

Bad Reason: this comment will only make sense to the person who wrote it

// a quick trim function used to fix bug I detected overnight
void trimInput(){
    ....
}

Good

/** Trims the input of leading and trailing spaces */
void trimInput(){
    ....
}

Bad Reason: this comment will only make sense to the person who wrote it

# a quick trim function used to fix bug I detected overnight
def trim_input():
    ...

Good

def trim_input():
"""Trim the input of leading and trailing spaces"""
    ...